3SI Accounting and Inventory Management 2.0 serial key or number

3SI Accounting and Inventory Management 2.0 serial key or number

3SI Accounting and Inventory Management 2.0 serial key or number

3SI Accounting and Inventory Management 2.0 serial key or number

mt-nfh.netlify.com

  1. Hogwasher 5.08 Millimeters
  2. Hogwasher 5.08 Cm
  3. Hogwasher 5.08 Feet
  4. Hogwasher 5.08 Mm
  5. Hogwasher 5.08 Centimeters
Sample Results From Member Downloads

Hogwasher 5.08 Millimeters


Hogwasher 5.08 Cm

Download NameDate AddedSpeed
Audiorefurb V3.515-Mar-20202,523 KB/s
Audiorefurb V3.5 Download15-Mar-20202,278 KB/s
Audiorefurb V3.5 KeyGen14-Mar-20202,186 KB/s
Audiorefurb V3.5 202010-Mar-20202,383 KB/s
Audiorefurb_V3.5_Updated_202010-Mar-20202,214 KB/s
Audiorefurb.V3.5.Proper.rar07-Mar-20202,987 KB/s
Audiorefurb V3.5 (2020) Retail07-Mar-20202,688 KB/s
Showing 7 download results of 7 for Audiorefurb V3.5
Audiorefurb V3.5 Download Search Tips

Room Arranger is 3D room / apartment / floor planner with simple user interface. Once you get the basics, you can draw whatever you imagine. Logic pro x plugins. While having wide library of objects, you can easily create. Product Name: Company: Rating: Reviewer: Issue: Escape the Museum: Gogii Games: Good: Linus Ly: 14.06: Access Strip: Siga Software: Excellent: William Lovett: 6.04.

More info: MOUNT SNOW, VERMONTVermont's Closest Big Mountain Resort to the Northeast Metros & home to Carinthia the #1 Terrain Park on the East Coast! Four mountain faces, weekly events, and parties at the Snow Barn round out our largest property!Mountain Stats: 80 Trails 580 Acres 9 Terrain Parks 20 Lifts 1700' VerticalMore Info: 800.245.SNOW HUNTER MOUNTAIN, NYNew York's premier 4-season resort just 2 1/2 hours from downtown NYC. Whitetail is located approximately 90 miles from Washington D.C. Driver 2018 cast. A freestyler's heaven as well as a perfect spot for those looking to ride a plethora of terrain! And 95 miles from Baltimore.

To create more accurate search results for Audiorefurb V3.5 try to exclude using commonly used keywords such as: crack, download, serial, keygen, torrent, warez, etc. Simplifying your search should return more download results.
Many downloads like Audiorefurb V3.5 may also include a crack, serial number, unlock code, cd key or keygen (key generator). If this is the case it is usually found in the full download archive itself.
Welcome To FileFixation.com
FileFixation.com is a new file sharing web service which gives you access to literally hundreds of thousands of direct downloads including software, games, movies, tv shows, mp3 albums, ebooks and more! Our downloads database is updated daily to provide the latest download releases on offer.
To celebrate our launch we are offering unlimited full download access for FREE! This is a limited offer and will soon expire and revert back to the normal member price. We now have 345,281 downloads in the member section. Take the FileFixation tour now for more detailed information!

Hogwasher 5.08 Feet

The word 'crack' in this context means the action of removing the copy protection from commercial software. A crack is a set of instructions or patch used to remove copy protection from a piece of software or to unlock features from a demo or time-limited trial. There are crack groups who work together in order to crack software, games, etc. If you search for Audiorefurb V3.5 Crack, you will often see the word 'crack' amongst the results which means it is the full version of the product.
The word 'serial' means a unique number which identifies the license of the software as being valid. All retail software uses a serial number or key of some form. The installation often requires the user to enter a valid serial number to proceed. A serial can also be referred to as a 'CD Key'. When you search for Audiorefurb V3.5 Serial for example, you may find the word 'serial' amongst the results. This usually means your software download includes a serial number of some sort.

Hogwasher 5.08 Mm

The word 'keygen' means a small program that can generate a cd key, activation number, license code, serial number, or registration number for a piece of software. KeyGen is a shortened word for Key Generator. A keygen is made available through crack groups free to download. When writing a keygen, the author will identify the algorithm used in creating a valid cd key. Once the algorithm is identified they can then incorporate this into the keygen. If you search a download site for Audiorefurb V3.5 Keygen, this often means your download includes a keygen.
Popular Download Searches
Audiorefurb V3.5, Crack Download, Swishzone Swishpix 1.5, Lern O Mat See, Scpro Ocx, All My Mov, Davka Writer, Cs4 Ultimate, Super Drivers Pack Windows Xp 10, 3si Accounting And Inventory Management 2.0, Passware Word Password Recovery V6.5.918, American Heritage, Boris Red 5.5.3002 X64, Binary Domain, Ni Labview Internet Toolkit 6.0.2, Moto Racer 3 Gold Edition, Avira Security 2011, Abbyy Lingvo X3 Multilanguage Plus 1 DVD, Dmi 5.18, Aneta Keys,

Hogwasher 5.08 Centimeters

[ Home Signup Take A Tour FAQ Testimonials Support Terms & Conditions Legal & Content Removal ]
Design and Layout © 2020 FileFixation. All rights reserved.
Источник: [https://torrent-igruha.org/3551-portal.html]
, 3SI Accounting and Inventory Management 2.0 serial key or number

US5367148A - Counterfeit detection using ID numbers with at least one random portion - Google Patents

This application is a continuation in part of copending application Ser. No. 07/420,101, filed Oct. 11, 1989,titled "OPTIMAL, ERROR-DETECTING, ERROR-CORRECTING AND OTHER CODING AND PROCESSING, PARTICULARLY FOR BAR CODES, AND APPLICATIONS THEREFOR SUCH AS COUNTERFEIT DETECTION," and this application is a continuation in part of copending application Ser. No. 292,569, filed Dec. 30, 1988, titled "INFORMATION TRANSFER AND USE, PARTICULARLY WITH RESPECT TO COUNTERFEIT DETECTION," which is a continuation of application Ser. No. 853,745, filed Apr. 18, 1986, now U.S. Pat. No. 4,814,589, titled "INFORMATION TRANSFER AND USE, PARTICULARLY WITH RESPECT TO OBJECTS SUCH AS GAMBLING CHIPS," the disclosures of all of which are incorporated herein by reference.

The invention disclosed herein relates to counterfeit detection methods.

When an object, such as a product or document, is worth disproportionately more than the cost of its manufacture, it may be counterfeited at a profit. For example, manufacturers of proprietary products lose billions of dollars each year because their most successful products are often targeted by counterfeiters who produce spurious goods locally or overseas. When counterfeit goods are of similar or identical quality to the original, a manufacturer suffers from a continuous loss of sales as counterfeiting continues unchecked, because detection is difficult or impossible. Inferior counterfeit products may be more easily detected, but in addition to the above, they also jeopardize future sales of non-counterfeited products by marring reputation. In either case, the manufacturer's continuing level of untold lost profits due to counterfeit may be dramatic. Similar concerns arise with counterfeit documents.

A partial listing of products susceptible to being counterfeited includes: airplane parts; art; auto parts; baby products--formula, diapers, clothing; books; computers; computer peripherals; cosmetics; designer goods--clothing, shoes, eye glasses; electronics; entertainment recordings--CDs, records, audio and video cassettes; games-board, firmware, handheld; military parts; optics--binoculars, cameras; pharmaceuticals; software; tools; toys; watches.

Documents susceptible to fraud (including counterfeit) include: betting tickets (lottery, sports, etc); bonds (Treasury, commercial, etc); certificates (birth, gift, warranty, etc); checks (personal, commercial, travelers, etc); coupons; credit cards; currency; licenses (driver, business, import/export, etc); passports; scrip (store, amusement park, etc); stamps (postage, food, etc); stocks; tickets (concerts, sports, theater, etc); travel tickets (airline, commuter, etc), and so forth.

Staggering losses due to counterfeit are estimated. For example, the International Anti-Counterfeiting Coalition, IACC, located in Washington, D.C., fears annual losses of $100,000,000,000 (no mistake--one hundred billion dollars!). On Apr. 23, 1990, U.S. Attorney Stephen J. Markman reported the following to the IACC:

"In addition to safety, the economic loss from

counterfeit products is enormous: The big three automakers estimate that they lose 240,000 jobs each year in the greater Detroit metropolitan area a/one due to counterfeiting of auto parts."

Two approaches for detecting counterfeit are: mechanical-based on conformity, and intellectual--based on uniqueness. These two counterfeit detection philosophies are based on fundamental underlying principles which are diametrically opposed to each other, conformity versus uniqueness.

Mechanical counterfeit detection techniques require physical examination and/or analysis of the object. The underlying principle here is conformity. Genuine objects are identical to each other while counterfeits must somehow be different. The difference between the genuine and fake must be discernible in order to detect counterfeit. For example, all U.S. currency is printed on special paper. Therefore, if a suspected bill's paper is discovered to be different, the bill is counterfeit.

Mechanical means alone cannot be relied upon. What one can make or print, another can as well. This creates inherent weaknesses. For example, some counterfeiters of U.S. currency have outwitted the special paper deterrent scheme described above by bleaching the ink off $1 bills and reusing the paper to print $100 bills, while other counterfeiters manufacture their own special paper which is sufficiently similar for their purposes.

Intellectual counterfeit detection and/or authentication techniques may; include signatures, numbers and/or other indicia for coding each genuine object differently. The underlying principle here is uniqueness. Each genuine object is individually signed, or assigned individual identifying information. Traditional ways to individually authenticate objects are: sign or assign.

One traditional way to authenticate certain objects, namely documents, is to sign them. Each person's signature is effectively different. Even though many may be named John Smith or Chun Lee, i.e., many have the same indistinguishable identifying name, respective signatures are different. Typically, fraud involving documents with individuals' signatures thereon is characterized as forgery, versus counterfeit.

For example, valid serial numbers may readily be anticipated and printed by counterfeiters using available numbering devices, while forging a signature is another matter. Blank checks, available at stationery stores, for example, may be authorized by John Smith's signature if he is known, or if that signature is verifiable, perhaps by comparison to other signed documents. Signatures, for example, bridge mechanical and intellectual techniques, involving examination-by-eye.

Applicants' anti-counterfeit techniques address mass produced objects, unsigned products and documents, manufactured to be essentially identical to each other-the only convenient and distinguishable difference among such essentially identical objects being the presence of associated identifying information, such as serial numbers.

Mr. Smith's signed check, mentioned above, may involve other variable information. For example, the dollar amount, the transaction date, payee information, Mr. Smith's address and bank account number, information about his bank, and so forth. Examples of other articles with variable parameters are: birth certificates, credit cards, lottery tickets, passports, etc.

Applicants' address how to detect counterfeit objects among essentially identical objects, objects that do not have individually and/or inherently variable parameters, objects such as mass produced products and documents, objects that may be readily identified only by their respective identifying information.

This is not to suggest that certain aspects of applicants' inventions may not be used beneficially in association with signed documents, for example, to augment the authentication afforded by the signature, for example.

Another traditional way to uniquely identify objects is to assign serial numbers, by counting, in a most convenient and orderly fashion. However, traditional serial numbers offer little obstacle to a counterfeiter because he can, for example, assign matching ascending and descending numbers given one correct serial number as a start, thereby duplicating authorized numbers only once. Even if two objects with matching serial numbers were found, thereby finding at least one counterfeit, mechanical techniques may still be required to tell which is counterfeit.

Also, counterfeiters could avoid following a pattern that may be helpful to pursuing authorities if the pattern were discovered. For example, rather than serially numbering their fakes, counterfeiters may randomly select numbering within a wide range of known-to-be valid numbers, so that the possibility of a particular consecutive narrow range of serial numbers being discovered by authorities as having been counterfeited is avoided, making the job most difficult for the authorities (albeit more difficult, but safer, for the counterfeiters as well).

According to described aspects of applicants' invention, intellectual coding techniques may also offer "self-checking" counterfeit detection schemes (serf-checking is a term used with error control coding, adopted for use by applicants when referring to certain intellectual anti-counterfeit coding techniques). Applicants define self-checking as follows: if a single read identifying number does not conform to a secret code, or match up in a database, it must be counterfeit.

The use of a secret algorithm is disclosed in McNeight et al's U.S. Pat. No. 4,463,250. MeNeight et at. provides objects with authorized ID numbers that conform to an algorithm or code, so that these ID numbers may be verified or tested for apparent authenticity using the same algorithm. The algorithm is cautiously deployed in locations where it is desirable to detect counterfeit by determining if an object's ID number conforms to the secret algorithm. Caution is required in order to prevent theft or discovery of the algorithm. Authorized ID numbers conform to the algorithm, but the algorithm itself is selected and/or used so that it does not readily allow easy discovery or reverse engineering of the originating algorithm. The algorithm must be kept secret so that it is not also used by unauthorized personnel.

However, if the secret algorithm were to be stolen or discovered (as a computer "hacker" might delight in doing) one may be worse off with the secret algorithm than without, because a false sense of security could have adverse consequences. Consider for example, what if someone unauthorized discovered the secret algorithm but thereafter kept this discovery a secret from those authorized to use the secret algorithm, so that there was no inkling that the secret had fallen into the wrong hands? Genuine objects authorized by the secret algorithm's ID numbers may then be more vulnerable and susceptible to being counterfeited than if traditional serial numbers had been used in the first place.

An encryption algorithmic technique used to calculate security codes is disclosed in Peter White's U.S. Pat. No. 4,630,201. White's invention concerns security for checks and other transactions involving money. White, uses a table of random numbers. The same table of random numbers is associated both with a portable transaction device and with a bank's central processor.

For a check, for example, a random number is selected from the table in the transaction device and used to encode the dollar amount of the particular check using an encryption algorithm. The calculated result, a security code, is then put on the check. The authenticity of the security code on such a check may be verified, by recalculating the security code again, in the same manner, in the bank's central processor, and comparing the two security codes for a match.

The invention disclosed herein utilizes the underlying principle of uniqueness for counterfeit detection. In accordance with the invention, each genuine object is assigned a different authorized identifying code. Counterfeit is detected when incorrect, repeated or out-of-place ID numbers are found on objects. ID numbers which are associated with objects may be represented in normal alphanumeric characters or otherwise, such as OCR or MICR fonts of alphanumeric characters, decimal characters, or bar coded characters, etc., which are designed to be machine read, and may be visible or substantially transparent.

In particular, an object's identifying serial number may be appended with one or more distinct random portions, positioned to the right of the serial portion, for example, with or without a decimal point (or binary point if binary were being used) or positioned preceding the serial number, or the serial portion may be understood as including one or more random portions, etc.

A truncated security ID number, comprised of a distinct serial number portion and a first random portion, may be used, for example, on the outside of a product package, and a complete security ID number, with a second random portion along with the serial number and said first random portion, used inside a product's packaging (concealing the complete ID number from casual perusal) such as on a product's enclosed return warranty registration card. Each distinct random portion may include one or more randomly selected digits.

Objects of the invention disclosed herein are to protect proprietary product and document integrity, quality, reliability, safety, authenticity and the like, by creating hurdles for would-be counterfeiters, and thereby reducing or eliminating such illegal, dangerous and/or economically devastating activity.

In so far as counterfeiting may nonetheless persist, it is another object of this invention to reduce investigative and/or prosecution effort, by providing those pursuing and/or prosecuting counterfeiters with irrefutable evidence, such as products or documents with unauthorized ID numbers, and therefore undeniably counterfeit, so that such culprits can be stopped from foisting their bogus, and typically shoddy, goods on society, and from unfairly competing with more honest commerce.

Other objects of the invention are to improve counterfeit detection and/or deterrence, to apprehend and/or track criminals and/or deter crime.

In accomplishing the above and other objects, individually and in various combinations, the applicants devised coding in accordance with their inventions, particularly but not exclusively for bar codes.

In accomplishing certain of the above objects of the invention, applicants have expanded upon and improved the counterfeit detection techniques disclosed in their U.S. Pat. No. 4,814,589 and copending patent applications mentioned above. According to their invention, such techniques involve accountability, alone or in combination with techniques which make it difficult to copy visually detectable features, such as holograms. The invention may be applicable to almost all types of counterfeitable objects.

In accordance with one aspect of the invention, a method for identifying unauthorized objects is provided comprising: associating with each authorized object identifying information of which at least one portion has been randomly selected; storing said information aside from said association with said authorized objects; reading said information from an object being checked for authenticity; and, comparing said read information with said stored information to detect discrepancy therebetween, whereby an unauthorized object is identified.

In accordance with another aspect of the invention, a method for identifying unauthorized objects is provided comprising: associating identifying coded indicia with each authorized object, a portion of said code having been selected from a detectable series and at least one other portion having been randomly selected; storing said identifying code aside from said association with said authorized objects; reading said coded indicia from an object being checked for authenticity; and, comparing said read coded indicia with said stored identifying code to detect discrepancy therebetween, whereby an unauthorized object is identified.

In accordance with another aspect of the invention, a method for identifying unauthorized objects is provided comprising: on at least one less accessible location of each authorized object, associating identifying information therewith which includes at least two distinct randomly selected portions; on at least one other more accessible location of each authorized object, associating said identifying information therewith but omitting at least one said distinct portion; storing said identifying information with said at least two distinct portions aside from said associations with said authorized objects; reading identifying information from at least one of said locations associated with an object being checked for authenticity; and, comparing said read information with corresponding said stored information to detect one or more discrepancies therebetween, whereby an unauthorized object is identified.

In accordance with this aspect of the invention, said identifying information may be read from both said locations associated with an object being checked for authenticity; and, said read information from both said locations may be compared with corresponding portions of said stored information to detect one or more discrepancies therebetween, whereby an unauthorized object is identified.

In accordance with another aspect of the invention, a method for identifying unauthorized objects with outer covering, such as products with packaging, is provided comprising: on at least one location inside said covering of each authorized object, associating identifying information therewith which includes at least two distinct randomly selected portions; on at least one location on the outside of said covering of each authorized object, associating said identifying information therewith but omitting at least one said distinct portion; storing said information with said at least two distinct portions aside from said associations with said authorized objects; reading identifying information from at least one of said locations associated with an object being checked for authenticity; and, comparing said read information with corresponding said stored information to detect one or more discrepancies therebetween, whereby an unauthorized object is identified.

In accordance with this aspect of the invention, said identifying information may be read from both said locations associated with an object being checked for authenticity; and, said read information from both said locations may be compared with corresponding portions of said stored information to detect one or more discrepancies therebetween, whereby an unauthorized object is identified.

In accordance with another aspect of the invention, a method of designating an object as authorized is provided comprising: randomly selecting at least one digit; storing said digit with a serial number for said object; and, associating said serial number and digit with said object.

In accordance with another aspect of the invention, a method of designating an object as authorized is provided comprising: providing at least one digit that cannot be anticipated; storing said digit with a serial number for said object; and, associating said serial number and digit with said object.

In accordance with yet another aspect of the invention, a method of designating an object as authorized is provided comprising: randomly selecting at least two distinct digits; storing said two distinct digits with said authorized object's serial number; and, associating said serial number and one distinct digit of said two distinct digits with said object on the outer surface thereof; and, associating said serial number and said two distinct digits with said object inside the outer surface thereof.

In accordance with still another aspect of the invention, a method of designating an object as authorized is provided comprising: randomly selecting at least two distinct digits; storing said two distinct digits with said authorized object's serial number; and, associating said serial number and one distinct digit of said two distinct digits with said object on the outer surface thereof.

In accordance with this aspect of the invention, said serial number and said two distinct digits may be located inside said object's outer surface. Also in accordance with this aspect of the invention, said serial number and said two distinct digits located inside said object's outer surface may be associated with a return card for said object.

In connection with one or more objects of the invention or aspects of the invention described herein, said identifying information may include a plurality of randomly selected portions, and at least one said randomly selected portion may be concealed in a given condition of said object. e.g., when wrapped in its original packaging.

Also in connection with one or more objects of the invention or aspects of the invention described herein, said identifying information may be: machine readable, represented at least once in machine readable code elements, and/or, represented at least once in a bar code symbol,

When said authorized objects with said associated identifying information in a bar code symbol also have UPC symbols associated therewith, said identifying information in a bar code symbol and said UPC symbol may be located near each other, and/or a reading from one of said symbols near each other is automatically delayed until said other symbol is also read in the same reading operation, and/or one bar code symbol is associated with said object, another possible bar code symbol not being near to said one, and said one bar code symbol is automatically read without undue delay in the reading operation due to anticipation of said another possible bar code symbol being near to said one, and/or said identifying information in a bar code symbol located near said UPC symbol may be substantially transparent, and/or said substantially transparent identifying information in a bar code symbol may be placed right over said UPC symbol.

Also in connection with one or more objects of the invention or aspects of the invention described herein, said read information may be checked to determine if the same identifying information was previously read from another similar object, whereby at least one of the objects with said same identifying information may be identified as an unauthorized object, and/or said same identifying information may be flagged or stored in a list to facilitate identification of additional possible unauthorized objects with said same identifying information, and/or a said object's read identifying information may be checked to see whether it has been previously flagged or stored in a list, whereby an unauthorized object may be identified.

Also in connection with one or more objects of the invention or aspects of the invention described herein, each said object may have associated therewith an other object which may be separated from said object and with which corresponding respective said identifying information having at least one randomly selected portion may be associated. Said other object may be a return card. Said corresponding identifying information may be read from a said return card and compared to said stored information to detect discrepancy, whereby an unauthorized return card may be identified.

Also in connection with one or more objects of the invention or aspects of the invention described herein, said identifying information associated with an authorized object may also include at least one other portion which has been selected in accord with a secret algorithm.

In accordance with yet another aspect of the invention, a system is provided for automatically detecting an unauthorized object, each authentic object having associated therewith authorized information of which at least one portion has been randomly selected, the system also comprising: means for storing said authorized information; means for reading information from an object; and, means for automatically detecting when said read information does not match up to said stored authorized information, whereby an unauthorized object is detected.

In accordance with another aspect of the invention, a system is provided for identifying an unauthorized object from a set of authorized objects, each authorized object of said set having identifying information associated therewith of which a portion has been calculated using an algorithm dependent on a randomly selected number, the system comprising: means for securely storing said randomly-selected numbers at a single location only; means for reading identifying information from an object: means coupled to receive said information read from said object for at least temporarily storing that information; and means for automatically detecting when information read from any object includes a different said portion than that calculated using said algorithm, whereby an unauthorized object is identified.

In accordance with another aspect of the invention, a system is provided for identifying an unauthorized object from a set of authorized objects, each authorized object of said set having identifying information associated therewith of which a portion has been calculated using an algorithm dependent on a randomly selected number, the system comprising: means for securely storing said identifying information, including said calculated portion, aside from said authorized object; means for reading identifying information from an object; means coupled to receive said information read from said object for at least temporarily storing that information; and means for automatically detecting when information read from any object includes a different said portion from said securely stored identifying information, whereby an unauthorized object is identified.

In connection with one or more objects of the invention or aspects of the invention described herein, means may be provided for automatically erasing randomly selected numbers for security purposes, and/or means may be provided for securely storing identifying information only at a single location aside from authorized objects, and/or means may be provided for automatically erasing a portion calculated using said algorithm after association with authorized objects.

In accordance with yet another aspect of the invention, a plurality of genuine essentially identical objects are provided, each having authorized identifying information associated therewith, the associated information being useful for indicating authenticity of each object, this information including a distinct serial number portion comprised of at least enough digits to uniquely identify each said object, and a second portion that cannot be anticipated, this second portion having at least one digit. This one digit may be randomly selected or result from a calculation using at least one randomly selected digit. Aside from association with said objects said information may be stored along with respective randomly selected digit(s) or second portions.

A system for indicating authenticity of such objects is also provided and it includes such objects and means for storing information aside from the association with objects, means for reading information from an object, means for comparing read information with stored information and finding a match therebetween, a match between read information and stored information indicating that the object with such read information is authentic.

In accordance with yet another aspect of the invention, a method of designating at least one of many essentially identical and identifiable objects as authorized is provided comprising: providing a serial number for one such object; and, providing a randomly selected number for this one object: using at least one digit of said serial number and at least one digit of said randomly selected number with an algorithm to calculate another number that cannot be anticipated for said object; and, associating at least one digit of said number that cannot be anticipated with said object.

In accordance with yet another aspect of the invention, a plurality of genuine essentially identical objects are provided, each having authorized identifying information associated therewith, this associated information being useful for indicating authenticity of each said object, and this information includes at least one digit that cannot be anticipated.

A system for indicating authenticity of such objects is also provided and it includes such objects and means for storing said information aside from said association with said objects; and, means for retrieving said stored information; and, means for reading information from an object; and, means for comparing said read information with said retrieved information and finding a match therebetween, a match indicating that said object with said read information is authentic.

Another system for indicating authenticity of such objects is also provided and it includes such objects and means for storing said identifying information aside from said association with said objects; and, means for storing other information related to said identifying information; and, means for retrieving said stored identifying information; and, means for retrieving said stored related information; and, means for reading information from an object; and, means for comparing said read information with a result of a calculation using said retrieved related information, and finding a match therebetween, a said match indicating that said object with said read information is authentic.

The invention and its background are described with particular reference to ID numbers, and bar coded ID numbers, in decimal, base ten, but which may be represented in any base such as binary, ternary, octal, decimal, base 43, etc. However, the invention has wider application and it is not intended to limit the scope of the invention by such references.

The invention is illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references, if any, indicate like parts, and in which:

FIG. 1 is a plan view of a product return card with ID number indicia in decimal digits and in bar code. The product return card may be found inside a product package. The ID number indicia include two random portions, shown as 23 and 17.

FIG. 2 is a side view of the outside of a product package with ID number indicia thereon corresponding in part to the ID number indicia on the product return card of FIG. 1.

FIG. 3 is a side view of the outside of a product package with ID number indicia thereon corresponding in part to the ID number indicia on the product return card of FIG. 1. Also located on this same outside side near said ID number indicia is a standard UPC bar code symbol.

FIG. 4 is a view of a product package with transparent or invisible to the naked eye ID number information and a standard UPC bar code symbol superimposed relative to each other.

Many products already include registration material, such as a blank name, address, where purchased form, printed on a return postcard on which may be found the product's ID number. Such cards are often used to activate a product's warranty.

Counterfeit products may be detected by looking for duplicate registration of normal serial numbers. However, this procedure leaves something to be desired, because counterfeit cannot be detected via the serial number until two (or more) of the same serial numbers are eventually registered, and even so, when two of the same serial numbers do turn up, an investigation must first be made to determine if one is genuine (as both may be fake) and if so, which one. Also, assuming a counterfeit product is positively detected and the vendor who sold the counterfeit product is identified by the product registrant, it may still be impossible, or cumbersome at best, to determine if other products in the vendor's stock are also counterfeit. Further, physical examination procedures would likely be "intrusive" and may render examined products unfit for retail sale.

In a way, these difficulties arise from the use of traditional serial numbers. Because traditional serial numbers are as orderly and convenient to use as possible, they are also completely and readily predictable, and thus are directly vulnerable and susceptible to being counterfeited.

Applicants' telling anti-counterfeit technique overcomes these short-comings: registration involving just one ID number on a counterfeit product can immediately and unmistakably be identified as fake, and even before a "lead" from the registration process, counterfeit products can be positively identified on the retail shelf or in mail order inventory warehouses or distribution channels, etc., without opening the product's packaging.

According to the invention, ID numbers include a serial portion and one or more random portions appended to, or associated with, the serial portion. Such D numbers have the serial portion in predefined digit positions, so that ID numbers may be used just as orderly and conveniently as traditional serial numbers. The serial number portion (which may be called the serial field) of the ID number is appended with one or more random portions (each random portion may be called a random field). Each random portion may contain one or more randomly selected digits. A random number generator may be used which may, e.g., randomly select digits based on cosmic noise. Required randomly selected numbers may be provided on-the-fly, as needed, and then stored if required or erased if not required. Or, required randomly selected numbers may be generated and stored in a list and the list then referred to as required. It may be useful for random portions to be separated from the serial portion by a decimal point, for example.

Security is enhanced because such complete authorized ID numbers are unpredictable as follows: if one decimal digit is randomly selected, only one in ten ID numbers would be predictable by a counterfeiter, and if two digits are randomly selected, only one in a hundred, etc. There is no secret code to be stolen or discovered. With applicants' random technique, the problems and worries described above for traditional serial numbers and ID numbering in accord with a secret algorithm are simply avoided.

For example, the serial random number (SRN) shown on the Product Return Card in FIG. 1 is:

For example, this ID number, 123456 23 17, is associated with a genuine product. The first six digits of the ID number, 123456, comprise a traditional sequential serial number with sufficient range to uniquely identify one million genuine products, from 000000 to 999999. The next four digits, in this example 23 and 17 (shown throughout herein with separating spaces for clarity) are randomly selected, and stored in a file, such as a computer file, perhaps a file associated with a database system, along with the traditional serial number portion, to form a file listing of complete authorized ID numbers. In other words, aside from associating authorized ID numbers with authentic objects, authorized ID numbers are also stored separately, e.g., on a list stored in a computer file. Because of the serial portion, the list of complete authorized ID numbers is as orderly as can be, and because of the randomly selected parts, it is also unpredictable as described.

For example, when a product's ID number, e.g., 123456 23 17, is entered from the return card in a product registration system computer containing the listing of complete authorized ID numbers, the random digits can be checked automatically--if they do not all match those which were originally stored, a counterfeit product's unauthorized ID number is positively and immediately detected. The product registration system computer may also be used by investigators looking for counterfeit, without need for registration and/or return cards, as described below.

In this aspect, complete authorized ID numbers simply cannot be effectively predicted or anticipated without one-for-one copying from complete genuine ID numbers by the counterfeiter, which is prohibitive, or, at least severely limiting, creating a hurdle for the counterfeiter.

Corresponding ID numbers, or preferably ID numbers corresponding only in part, may also be put on the outside of product packaging. The truncated serial random number (SRN), which corresponds in part to the ID number indicia shown in FIG. 1, is shown in FIG. 2 on the Product Package as:

The reason for truncation is described below. Use of such ID numbers on the outside of product packaging makes them readily accessible, and allows a "shopping" service contracted by the product's manufacturer, or an investigator, to read and store bar coded ID numbers from products, e.g., on store shelves, and then send them, for example using a modem, to the manufacturer's system registration computer where the randomly selected portion of the ID numbers read from products can be checked against the stored list of complete authorized ID numbers, so that unauthorized ID numbers from counterfeit products may be detected. Thus, counterfeit products may be identified even before customer purchase, and authorities may be put on the trail of the perpetrators sooner. In enforcement proceedings, even good leads can get cold.

Or for example, applicants' counterfeit product detection system could be set up to include handheld devices that combine radio communication capability with bar code reading (e.g., the LRT 3800, which also includes portable computer terminal capabilities, in a handheld unit, a product of Symbol Technologies Inc., of Bohemia, N.Y.) so that counterfeit could be detected at about the speed of light while an investigator points the device at a product being checked for authenticity. For example, the LRT 3800 device reads and interprets the ID number bar code on a product that may be counterfeit, radio communicates this information to the product registration system computer to automatically check the ID number's random digit(s) to see if they match what was originally stored, and then receives back from the computer an indication if the ID number is unauthorized, thereby detecting counterfeit.

The type of equipment used by Federal Express delivery service may be adapted for applicants' counterfeit detection system. Federal Express uses bar code reading and communication devices, and sometimes a communication satellite, in a package tracking system (see Automatic ID News Vol. 7, #2, 2/91, pg. 16). With such devices working with a central anti-counterfeit computer system, for example, counterfeit could be detected quickly, on a shelf in a location being checked for having counterfeit product, at a U.S. border in a routine or special Customs inspection, and so forth.

If a counterfeit product with an unauthorized ID number did turn up in the registration process, a shopping service or an investigator could be dispatched directly to the location that sold the counterfeit and/or to this seller's supplier, to check for additional counterfeit products, without opening product packaging. Such investigation may be conducted covertly if there is suspicion that the vendor himself may be implicated. (Bar code readers with storage, for example, only the size of a credit card, are commonly available.)

With bar coded ID numbers on the outside of packages, investigative effort is reduced, and subsequent prosecution effort may be simplified, because prosecuting attorneys may have irrefutable evidence: e.g., product with an unauthorized ID number, and therefore counterfeit.

ID numbers located on the outside of packaging are more accessible than ID numbers located inside the packaging, and may therefore more readily allow the possibility of a counterfeiter acquiring authorized ID numbers from the outside of genuine product packaging than from the inside (this may not be a significant risk in all cases). For example, a counterfeiter might bribe someone in a distributor's shipping/receiving department to accumulate "outside" authorized ID numbers with a concealable bar code reader so that they could be used later on counterfeit products. if this happened, the manufacturer could be back where he started, looking for duplicates, suffering the shortcomings mentioned above, or perhaps even being worse off because of a false sense of security.

Applicants' anti-counterfeit invention anticipates this possibility. For example, the complete authorized ID number, 123456 23 17, is printed on the return registration card (as shown in FIG. 1) which is located inside the package and is therefore less accessible than the ID number located on the outside of packaging, thus concealing the complete authorized ID number from casual perusal. For example, if a product is in its original packaged condition, an ID number with associated random portions located inside the packaging would be concealed.

Only a truncated authorized ID number, 123456 23, is printed on the outside of the package (as shown in FIG. 2). Thus, even if a counterfeiter surreptitiously acquired outside ID numbers from product packaging, counterfeit products can still be detected immediately upon registration, and also with absolute certainty, and still without relying on the appearance of duplicate registration ID numbers.

If the first two random digits of inside ID numbers are correct, and only the last two random digits are wrong, the manufacturer need not go looking for incorrect outside ID numbers on any shelves, so to speak, because it is evident that the counterfeiter somehow acquired authorized (but truncated) outside ID numbers.

In this case the manufacturer is still not without help from the system computer, by which this discovered "leak" may be dealt with, and this now notorious counterfeiting ring broken. Indeed, it may well be possible to catch culprits "in the middle," by analyzing when the products with the copied outside ID numbers were manufactured and through what distribution channels they moved, as well as backtracking the source of the counterfeit product itself.

In an embodiment of applicants' invention, a list (e.g., a partial listing limited to specific ranges of serial numbers, and/or selected geographical and/or chronological parameters, etc.) of authorized outside ID numbers in the above example, 123456 23) might be supplied in a portable, noncommunicating unit to investigators for use in the field as described below. For increased security, perhaps specially trusted investigators only would be supplied with such "portable" lists, and/or such lists may only be supplied just prior to an investigation at a given location, and/or such lists may only be supplied in units that automatically erase the list after a given amount of time has elapsed and/or at a specified time, etc.

In any case, this embodiment is less of a security exposure than supplying complete ID numbers for use in the field, especially if only a limited, partial listing is provided. For example, even if a portable list was acquired and used by counterfeiters, more complete ID numbers, such as those from a return card, would still expose the crime.

Источник: [https://torrent-igruha.org/3551-portal.html]
3SI Accounting and Inventory Management 2.0 serial key or number

Genesis certainly loves to place goodies in hidden places or areas that seem inaccessible at first. To get to them, the game adds extra mechanics and platforming elements that allow you to channel your inner Prince of Persia. Some also become accessible after gaining new abilities.

.

What’s New in the 3SI Accounting and Inventory Management 2.0 serial key or number?

Screen Shot

System Requirements for 3SI Accounting and Inventory Management 2.0 serial key or number

Add a Comment

Your email address will not be published. Required fields are marked *